

Offchain Labs Sequencer Liveness
Security Assessment (Summary Report)

March 31, 2025

Prepared for:

Harry Kalodner, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Gustavo Grieco and Tarun Bansal

Table of Contents

Table of Contents 1
Project Summary 2
Executive Summary 3

1. Uncached access to statedb/arbos when using hooks options 4
A. Vulnerability Categories 7
B. Prototype of a Sequencer Fuzzer 9
About Trail of Bits 11
Notices and Remarks 12

 Trail of Bits 1 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Jim Miller, Engineering Director, Blockchain
jim.miller@trailofbits.com

The following consultants were associated with this project:

 Gustavo Grieco, Consultant Tarun Bansal, Consultant
 gustavo.grieco@trailofbits.com tarun.bansal@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

March 10, 2025 Delivery of report draft

March 11, 2025 Report readout meeting

March 31, 2025 Delivery of final summary report

 Trail of Bits 2 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of the core code of the Arbitrum
Sequencer, specifically the revision at commit fcb4018.

The Sequencer is a pivotal component of the Arbitrum network and is responsible for
efficiently ordering and processing transactions. It plays a crucial role in providing users
with fast transaction confirmations while maintaining the security and integrity of the
blockchain. In this review, we reviewed the core components, including the loop that
validates and feeds transactions into ArbOS. The focus of this audit are issues that affect
the correctness or liveness of the Sequencer.

A team of two consultants conducted the review from February 24 to March 7, 2025, for a
total of three engineer-weeks of effort. With full access to source code and documentation,
we performed a manual review of the code in scope.

Observations and Impact
This engagement revealed an issue related to a potential denial-of-service vector using
StateDB/ArboOS state when processing transactions. While the severity of the issue was
rated as low, Offchain Labs should reevaluate the system to consider how resource
consumption degrades the performance of the Sequencer and which alternatives are more
likely to mitigate current and future issues.

Additionally, we provide a prototype of a fuzz test for the Sequencer in appendix B.

Recommendations
Based on the findings identified during the security review, Trail of Bits recommends that
Offchain Labs take the following steps:

● Fix issue TOB-ARB-SEQ-1.

● Consider adding a fuzz test similar to the one described in appendix B.

 Trail of Bits 3 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

https://github.com/trailofbits/audit-arbitrum-nitro/commit/fcb40184c4b13aa15d868b382cc7dec867b29388

1. Uncached access to statedb/arbos when using hooks options

Severity: Low Difficulty: Medium

Type: Denial of Service Finding ID: TOB-ARB-SEQ-1

Target: tx_options.go, tx_pre_checker.go

Description
The repeated access of go-ethereum/arbos state can be a potential vector for a
denial-of-service attack in specific Sequencer configurations.

The Sequencer can be configured with a number of different options, which run in specific
hooks:

type ConditionalOptions struct {

 KnownAccounts map[common.Address]RootHashOrSlots `json:"knownAccounts"`

 BlockNumberMin *math.HexOrDecimal64

`json:"blockNumberMin,omitempty"`

 BlockNumberMax *math.HexOrDecimal64

`json:"blockNumberMax,omitempty"`

 TimestampMin *math.HexOrDecimal64

`json:"timestampMin,omitempty"`

 TimestampMax *math.HexOrDecimal64

`json:"timestampMax,omitempty"`

}

Figure 1.1: Options for hooks

These options are used during the execution of the filter that runs before a transaction is
executed:

func (s *Sequencer) preTxFilter(_ *params.ChainConfig, header *types.Header, statedb
*state.StateDB, _ *arbosState.ArbosState, tx *types.Transaction, options
*arbitrum_types.ConditionalOptions, sender common.Address, l1Info *arbos.L1Info)
error {
 if s.nonceCache.Caching() {
 stateNonce := s.nonceCache.Get(header, statedb, sender)
 err := MakeNonceError(sender, tx.Nonce(), stateNonce)
 if err != nil {

 Trail of Bits 4 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

 nonceCacheRejectedCounter.Inc(1)
 return err
 }
 }
 if options != nil {
 err := options.Check(l1Info.L1BlockNumber(), header.Time, statedb)
 ...

Figure 1.2: Header of the preCheckTx function

The options will be used in the Check function. In particular, this function can query the
GetStorageRoot if the user specifies a range of known accounts with nonzero root
hashes:

func (o *ConditionalOptions) Check(l1BlockNumber uint64, l2Timestamp uint64, statedb
*state.StateDB) error {
 if o.BlockNumberMin != nil && l1BlockNumber < uint64(*o.BlockNumberMin) {
 return NewRejectedError("BlockNumberMin condition not met")
 }
 if o.BlockNumberMax != nil && l1BlockNumber > uint64(*o.BlockNumberMax) {
 return NewRejectedError("BlockNumberMax condition not met")
 }
 if o.TimestampMin != nil && l2Timestamp < uint64(*o.TimestampMin) {
 return NewRejectedError("TimestampMin condition not met")
 }
 if o.TimestampMax != nil && l2Timestamp > uint64(*o.TimestampMax) {
 return NewRejectedError("TimestampMax condition not met")
 }
 for address, rootHashOrSlots := range o.KnownAccounts {
 if rootHashOrSlots.RootHash != nil {
 storageRoot := statedb.GetStorageRoot(address)
 ...

Figure 1.3: Header of the Check function

However, the query of GetStorageRoot is not protected by any cache, and it could be
expensive if called multiple times.

Additionally, in the PreCheckTx function, there is an another uncached access to nonces
from the StateDB object, as well as several uses of the ArbOS state:

func PreCheckTx(bc *core.BlockChain, chainConfig *params.ChainConfig, header

*types.Header, statedb *state.StateDB, arbos *arbosState.ArbosState, tx

*types.Transaction, options *arbitrum_types.ConditionalOptions, config

 Trail of Bits 5 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

*TxPreCheckerConfig) error {

 ..

 baseFee := header.BaseFee

 if config.Strictness < TxPreCheckerStrictnessLikelyCompatible {

 baseFee, err = arbos.L2PricingState().MinBaseFeeWei()

 if err != nil {

 return err

 }

 }

 if arbmath.BigLessThan(tx.GasFeeCap(), baseFee) {

 return fmt.Errorf("%w: address %v, maxFeePerGas: %s baseFee: %s",

core.ErrFeeCapTooLow, sender, tx.GasFeeCap(), header.BaseFee)

 }

 stateNonce := statedb.GetNonce(sender)

 if tx.Nonce() < stateNonce {

 return MakeNonceError(sender, tx.Nonce(), stateNonce)

 }

 …

Figure 1.4: Header of the preCheckTx function

Exploit Scenario
The owner of a Sequencer configures its hooks to check for certain known accounts. This
causes the performance to be degraded for all users.

Recommendations
Short term, consider using a cached access for the call to GetStorageRoot as well as the
ArbOS state itself.

Long term, review the bottlenecks across the components, particularly the ones that
require direct access to external components.

 Trail of Bits 6 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 7 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

 Trail of Bits 8 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

B. Prototype of a Sequencer Fuzzer

For this engagement, we created a prototype of a fuzz test for the Sequencer that uses Go
native fuzzing. This test covers the processing of simple L2 transactions with arbitrary
nonces (which are essentially untrusted) as well as occasional reorgs:

func FuzzNonceQueue(f *testing.F) {
 f.Fuzz(func(t *testing.T, nonces []byte) {
 t.Parallel()
 ctx, cancel := context.WithCancel(context.Background())
 defer cancel()

 builder := NewNodeBuilder(ctx).DefaultConfig(t, false)
 builder.takeOwnership = false
 builder.execConfig.Sequencer.NonceFailureCacheSize = 8
 builder.execConfig.Sequencer.NonceFailureCacheExpiry = 100 *
time.Millisecond

 cleanup := builder.Build(t)
 defer cleanup()
 count := min(16, len(nonces));
 var completed atomic.Uint64
 for i := 0; i < count; i++ {
 println(i)
 value := uint64(nonces[i] % 16)
 println(value)
 builder.L2Info.GetInfoWithPrivKey("Owner").Nonce.Store(value)
 tx := builder.L2Info.PrepareTx("Owner", "Owner",
builder.L2Info.TransferGas, common.Big0, nil)
 go func() {
 err := builder.L2.Client.SendTransaction(ctx, tx)
 if err != nil {
 println(err.Error())
 }
 completed.Add(1)
 }()
 }

 startMsgCount, err := builder.L2.ConsensusNode.TxStreamer.GetMessageCount()

 for {
 got := int(completed.Load())
 println(got)
 if got >= count {
 break
 }
 if got == count / 2 {
 err =
builder.L2.ConsensusNode.TxStreamer.ReorgTo(startMsgCount)
 if err != nil {

 Trail of Bits 9 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

https://go.dev/doc/security/fuzz/
https://go.dev/doc/security/fuzz/

 println(err.Error())
 }
 }
 time.Sleep(time.Millisecond * 10)
 }
 })
}

Figure A.1: The FuzzNonceQueue fuzz test

Moving forward, we recommend that Offchain Labs implement a “fuzzer-friendly mode”
that avoids performing very CPU-intensive operations that can be skipped during a fuzzing
campaign.

 Trail of Bits 10 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

 Trail of Bits 11 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2025 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

Trail of Bits considers this report public information; it is licensed to Offchain Labs under
the terms of the project statement of work and has been made public at Offchain Labs’
request. Material within this report may not be reproduced or distributed in part or in
whole without Trail of Bits’ express written permission.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through sources other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

 Trail of Bits 12 Offchain Labs Sequencer Liveness
 PUBLIC Security Assessment

https://github.com/trailofbits/publications

	
	
	
	Offchain Labs Sequencer Liveness
	Table of Contents
	
	
	
	Project Summary
	Executive Summary
	1. Uncached access to statedb/arbos when using hooks options
	

	
	A. Vulnerability Categories
	
	B. Prototype of a Sequencer Fuzzer
	About Trail of Bits
	
	Notices and Remarks

